Microstructural Characterization of Ti-6Al-4V using Acoustic Emission Signals During Nanoscratch Test

Merryl Dewabrata1, Ashif Iquebal2, Dr. Satish Bukkapatnam3

1. Department of Computer Science, Texas A&M University
2. Department of Industrial and Systems Engineering, Texas A&M University

Introduction
- Known techniques to observe microstructures involve imaging the surface using electron or optical microscopy, spectroscopy, or nanoindentation.
- We study an automated approach to characterize microstructures in-situ using nanoindentation setup without imaging the surface.
- Detect microstructures using an acoustic emission (AE) sensor to capture changes in acoustic waves emitted by the indenter tip that correspond to the needle grazing grain boundaries.

Intrinsic Time-Scale Decomposition
- The original signal is decomposed into a proper rotation, and residual signal called the baseline[1]. The procedure is reapplied to the baseline signal to obtain a monotonic trend.
- Stops when the resulting baseline has only two extrema or is a constant[2].

Experimental Procedure
Nanoscratch setup:
- Hysitron Ti 950 TriboIndenter
- Loading and unloading time of 5 s, actual scratch 17 s
- Down force of 800 μN collected at 500,000 Hz
- Down force of 10,000 μN collected at 100,000 Hz
- Sensor on the surface of the sample

Results
Red line indicates indenter starting and stopping, orange highlight indicates loading and unloading, blue highlight indicates actual scratch.
- No trends or patterns are visible in original signal.
- No consistent patterns in changes during load or unload, they may increase, flat line, or spike.
- Changes during scratch are random and do not match scratch in surface image.
- Baseline signal in Fig 5. shows no change between loading and scratch.
- Changes are present between the indenter operating and not, but have no consistent pattern or trend.

Conclusions
- AE sensor can be used to detect changes in the signal that occur when loading and unloading start and end, and scratches start and end.
- No consistent pattern exists among the changes, thus they are inconclusive.
- Distinct changes present in the middle of the scratch and load are random and inconclusive to whether these changes are indicative of the indentation tip grazing over grain boundaries.
- The proposed approach cannot be automated with a nanoindentation setup using this external AE sensor. A more sensitive sensor is necessary.

Acknowledgments
This work is supported by the National Science Foundation under REU Site Grant (\# EEC 1757882). Any opinions, findings, conclusions, or recommendations presented are those of the authors and do not necessarily reflect the views of the National Science Foundation. We also acknowledge the significant support for summer research and enrichment activities by Texas A&M College of Engineering’s Undergraduate Summer Research Grant Program.

References